TOTAL COLD CONTROL MANUAL Pro Refrigeration, Inc. # **Table of Contents** | Preface 3 | |-----------------------------------| | Manufacture Information3 | | Customer Service3 | | 1 Installation4 | | 1-1 Hardware4 | | 1-2 Auxiliary Components5 | | 1-3 Connection Detail 6 | | 2 Set Up10 | | 2-1 Switch Configuration10 | | 2-2 TCCV Network Configuration 11 | | 3 TCCV Overview | | 4 TCC Operation16 | | 5 Troubleshooting Guide | | Glossary20 | # **Preface** This Manual is intended to be used in conjunction with Pro Refrigeration's TCC control system. This manual will guide you through the process of installing, wiring, configuring, and using your TCC control board and TCCV display. **Note:** Check the following URL for the latest version of this manual and other Pro Refrigeration, Inc. product documentation. http://www.prochiller.com/support #### **TCC Summary** The TCC control system consists of one micro-processor control board per refrigeration circuit, one touch screen interface panel (TCCV), and all associated transducers and components. The TCC control system can be used with up to four (4) refrigeration circuits. The TCCV display can communicate with up to 4 TCC cards through a RS-485 communications bus. #### Offered By: Pro Refrigeration, Inc. Pro Refrigeration's headquarters is located in Auburn, WA. #### **Manufacturing Locations:** Washington: North Carolina: 326 8th ST SW 125 John Crotts Rd Auburn, WA 98001 Mocksville, NC 27028 www.prorefrigeration.com #### **Mailing Address:** PO BOX 1528 Tel: 253-735-9466 Auburn, WA Fax: 253-735-2631 98071-1528 #### **Customer Service** Please feel free to contact customer service with any questions pertaining to this or any other Pro Refrigeration, Inc. product. **Customer Support Hours:** **Monday-Friday** 7am-5pm (Pacific Standard Time) Telephone: (253) 735-9466 Fax: (253) 735-2631 Email: service@prorefrigeration.com # 1 Installation ### 1-1 Hardware The Total Chiller Control (TCC) system consists of a microprocessor control board, a touch screen interface (TCCV), and all associated components. Only use components approved by Pro Refrigeration. Figure 2 Mount the TCC control board in a NEMA rated enclosure rated for the environment it is to be operated in. Use the mounting tray (Figure 1) and secure it with appropriate hardware at both ends. Figure 1 Mount the touch screen interface in panel door. Use mounting hardware supplied with the unit to secure. Figure 3 # 1-2 Auxiliary Components There are two types of temperature probes used on the TCC control system. Both are NTC Thermistors. Use the submersible probe when immersed in fluid such as glycol. Secure probe to internal piping using plastic clamps or cable ties. Figure 4 Use the brass head (uncoated) type for suction and discharge temperature monitoring. Probe to be mounted to pipe using a clamp to secure it. Probe to be mounted on upper half of pipe as shown in Figure 5. Figure 5 Discharge pressure transducers to be mounted directly onto the compressor in the discharge port. Suction transducers are to be mounted in the top of the suction line between the compressor and suction accumulator. Figure 6 The TCC is designed to operate two electronic expansion valves per board. Use only Emerson EX type electronic valves. Figure 7 #### General Connections to the TCC board are to be made using removable two, three and four point terminal blocks and the mounted terminal block on the card (J24). DO NOT CONNECT THE 8P8C PORT (J14) TO AN ETHERNET NETWORK. DAMAGE TO THE CONTROL BOARD WILL OCCUR. J11: Programing port for initial programing of the control board. J12: RS485 BCS for connection to other TCC control boards (*Figure 9*) J13: RS485 MODBUS COMM for communication with Touch Screen Interface. (*Figure 9*) Red wire to Pin 1: RS485 Tx+/Rx+ Black wire to Pin 6: RS485 Tx-/Rx-Shielded wire to Pin 5: GND J16: 24V DC power input. F1 fuse block requires a 2A fuse Figure 9 J24: Main run signal. This is typically connected to the switch on the front of the control panel. Connect between 1 and 2 for "Run" mode and between 2 and 3 for "Pump Down" mode. #### Inputs J1: Discharge Pressure Transducer. Requires a 0.5-4.5 V signal from a 0-500 psi transducer. J2: Suction Pressure Transducer. Requires a 0.5-4.5 V signal from a 0-100 psi transducer. Figure 10 J3A: Compressor suction temperature. Requires brass head temperature probe. J3B: Compressor discharge temperature. Requires brass head temperature probe. J4: Current sensing relay located on the circulation pump J5A: Inlet Temperature. This is used for the temperature of the glycol coming into the chiller tank. Requires submersible temperature probe. J5B: Outlet Temperature. This is used for the temperature of the glycol leaving the chiller. Requires submersible temperature probe. J6: Spare Input J7A: Valve A suction temp (for use on electronic expansion valve systems). Requires brass head temperature probe. J7B: Valve B suction temp (for use on electronic expansion valve systems). Requires brass head temperature probe. J23.3 and J23.4: Remote alarm signal. Jumper to run, open to shut down and alarm. ### **Outputs** J8: Electronic Expansion valve 1 control. Can be connected directly to Emerson EX electronic expansion valves as shown in *Figure 11*. Do not use any other brand or type of expansion valve with this controller. J9: Electronic Expansion valve 2 control. Can be connected directly to Emerson EX electronic expansion valves as shown in *Figure 11*. Do not use any other brand or type of expansion valve with this controller. Figure 11 J10: Alarm output J21.1: Contact closes for condenser fan 1 to turn on. J21.2: Contact closes for condenser fan 2 to turn on J21.3 Contact closes for condenser fan 3 to turn on J21.4 Contact OPENS for circulation pump to turn on. J22.1 Contact closes for compressor to run J22.2 Contact closes for liquid solenoid valve to open. J22.3 Contact closes to energize compressor unloader 1 J22.4 Contact closes to energize compressor unloader 2 (if available) J23.1 Not Used J23.2 Common for J21 and J22 | | A . | 01 1 | | | | | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------|--|--|--|--| | | 10 | Cond Fan 1 | | | | | | J21 | 20 | Cond Fan 2 | | | | | | J | 30 | Cond Fan 3 | | | | | | | 40 | Circ Pump | | | | | | Alling a service shall be serv | 10 | Compressor | | | | | | J22 | 20 | LLSV | | | | | | JZ | 30 | Unloader 1 | | | | | | | 40 | Unloader 2 | | | | | | | | | | | | | Figure 12 # TCCV Connection (Touch Screen Display) **1: 24V Power Terminal:** This terminal is connected to a 24V AC or DC power source. **2: COM1/2:** The COM1/2 9-PIN serial port is used for RS485 MODBUS communication with the TCC card. The wiring is setup as followed: Red wire to Pin 1: RS485 Tx+/Rx+ Black wire to Pin 6: RS485 Tx-/Rx-Shielded wire to Pin 5: GND Figure 13 **3: LAN:** The Ethernet port on the TCCV allows you to connect to your existing computer network, giving you the ability to access the TCCV remotely. Please see the Set Up section for information on setting the TCCV's IP address. 4: COM 34: Not used. # **2**_{TCC Set Up} # 2-1 Switch Configuration When connecting to a network of TCC cards, use the DIP switches (S-9) to assign each card a number in the network (*Figure 15*). Figure 15 **\$10:** Switch \$10 must be set to TMP for all TCC applications **S11 & S12:** For 3 and 4 circuit systems, board number 1 must be set to "ON" for both 1 and 2 **S1 thru S8:** Hand/Off/Auto Switches must be set to "Auto" (*Figure 16*). Figure 14 Figure 16 # 2-2 TCCV Network Configuration This guide is designed to be used in conjunction with a TCCV Touch Screen Display that was factory installed on a Pro Refrigeration, Inc. Chiller System. As such, this guide assumes that all programming and non-network related wiring is complete The login information to gain access to your systems operating parameters from the login screen is provided below. | User | Password | Security Level | |-------|----------|----------------------------| | Read | read | View Only | | User | user | View & Control | | Admin | admin | View, Control, & Configure | Figure 17 #### **Connect Local Network** Connect an Ethernet cable from an available Ethernet port on the 5 port Ethernet switch located in the control panel to an open port on your network switch or router. DO NOT CONNECT THE 8P8C PORT (J14) TO AN ETHERNET NETWORK. DAMAGE TO THE CONTROL BOARD WILL OCCUR. #### **Set IP Address** To allow the TCCV display to communicate with your network, you will need to give it an available IP address on your network. To set the IP address, follow the steps and pictures below. First, tap on the Login button, then choose the username "User" and enter the password "user" using the on screen keyboard. Once you are logged in, touch the "SETTINGS" button to go to the settings screen. Figure 18 From there, tap the button that says "Change IP" to open the "IP Settings" dialog. Figure 19 On this dialog, you want to tap on "Specify an IP address", then tap on each field below and set them to your desired IP address and network settings using the onscreen keyboard. Please note you can leave this as "Obtain an IP address via DHCP". However, this will prevent you from being able to access your screen as shown in step 4. You may need to move the keyboard (tap & drag) to enter values in the lower fields. Once you have entered the information, tap the button "Apply" to save the changes and tap the button "OK" to close the window. #### **Send Data to Pro** To set the TCCV to send data to Pro Refrigeration. On the bottom left of the settings screen, there are two buttons labeled "ON" and "OFF" next to "Send Data to PRO". Tap the button that says "ON" to turn this feature on. Figure 20 ### **Set Up Email Alerts** Finally, set up your email alert addresses on the TCCV. First, tap the button labeled "Email Alerts" to open a small dialog. Figure 21 In this window, you will see three boxes filled with "techsupport@prorefrigeration.com", "Email address 1", and "Email address 2". Enter the desired email addresses in the boxes with "Email address 1" and "Email address 2" using the onscreen keyboard. You may need to move the keyboard (tap & drag) to enter values in the lower fields. Once you've entered your desired email addresses, tap the button "Save" to save the information. Finally, tap "X" to close the window. #### **Redirect Ports to TCCV** The TCCV has an embedded webserver to display system status. To allow remote connections to access to your TCCV from outside your network, redirect the following UDP & TCP ports from your router to the address you just configured on your TCCV display. TCP: 4001 UDP: 4001 ### **Accessing Your TCCV** You should now be able to access your TCCV from any computer using your external IP address and port 4001 in a web browser as shown below. http://YOUR EXTERNAL IP:4001 A login page will display asking for a username and password. Login with username "User" and password "user". # 3 TCCV OVERVIEW This section contains a summary of each screen within the TCCV display. Details will be given on each setting to give a better understanding of how it can be effectively used in your specific deployment. #### 3-1 Home Screen The home screen has basic information related to the chiller. From left to right: lead compressor (indicated by the L# in the top left corner), glycol reservoir temperature (temp probe plugged into J5B), system set point, and cooling demand. Figure 22 #### Login - To login, tap the "Login" button. When the dialog appears, select the user you wish to login as under the User dropdown and enter the corresponding password. The default users and passwords are as follows: | User | Password | Access | |-------|----------|-------------------------| | Read | read | Read only access to all | | | | screens excluding | | | | Admin | | User | user | Excludes access to | | | | Admin screen | | Admin | admin | All screens | #### **Changing Set Point -** To change the system set point, tap the green SP circle. A numerical pad will display; enter the desired set point temperature and hit the return key. This will change the set point for all circuits on the system. #### **Cooling Demand -** The cooling demand gauge indicates the system's total cooling demand. The scale will depend on the number of compressors on a system (ex: 1 compressor = 0-100, 2 compressors = 0-200, 3 compressors = 0-300 and 4 compressors = 0-400). The number the gauge is pointing to indicates the number of compressors currently running. On a four-compressor system if the gauge is pointing to 300, then three of the four compressors are currently running. Figure 23 #### 3-2 Pressure Screen To access the pressure screen, tap the "PRESSURE" button on the bottom navigation bar. The pressure screen gives compressor specific pressure and superheat information. From left to right and top to bottom: selected compressor, mode, suction pressure, evaporator superheat and discharge pressure. Figure 24 #### Compressor Selection- Albanya and and this even To change the selected compressor, tap the dropdown in the top left corner and select the compressor you would like to view. #### Modes- InchA research than totals contiled the The mode box will display the TCC mode of the selected compressor. The following is a list of modes that can be displayed and there meaning. These mode's titles are the user-friendly version. The exact mode of the selected compressor can be found on the Detail screen. | Mode | Description | |-------------|------------------------------------------------------------------------------------------------------------| | No Demand | The system is at or below its set point | | Chill Mode | The system is in cooling mode | | Please Wait | The system is in a safe guard mode to prevent the compressor from shutting down and restarting excessively | | Alarm | A system alarm has occurred | | |-------|-----------------------------|--| | | and can be viewed on the | | | | Alarms screen | | #### Detail Button- The "Detail" button will take you to the Details screen. The Details screen has more compressor specific read-only data. #### **Detail Screen** To access the Detail screen, tap the "Detail" button in the center of the Pressure screen. The Details screen gives the user access to read-only operational values. The values indicated on this screen are specific to the compressor selected in the dropdown on the top left of the screen. Figure 25 #### **Reset Card-** When the "Reset Card" button is pressed the selected compressors TCC card will be reset. This can be useful when the card is in a non-auto resetting alarm. Once reset the card will check state again, if no alarms are active normal operation will be resumed. #### 3-3 Alarms Screen To access the pressure screen, tap the "ALARMS" button on the bottom navigation bar. The Alarms screen gives the user access to the alarm manager, which contains a historical list of all alarms. Figure 26 #### Siren Alarm Indicator- When an alarm occurs you will notice a siren in the top left corner of the screen. A red siren indicates that the alarm is currently active and corrective actions should be taken to clear the alarm. A green siren indicates that an alarm has previously occurred but is not currently active. The green siren will go away when the alarm is acknowledged in the alarm manager. #### Acknowledging Alarms- Alarms that are not currently active can be acknowledged within the alarm manager by tapping the alarm and then pressing the "Ack Selected" button. #### Alarms- See Trouble Shooting Guide for a detailed list of Alarms. #### 3-4 Settings Screen To access the Settings screen, tap the "SETTINGS" button on the bottom navigation bar. The Settings screen gives the user the ability to see system resource usage and adjust system settings. Figure 27 #### **Export Records to USB-** When the "Export Records to USB" button is pressed operational logs will be downloaded to the installed USB drive. Please note that if the USB drive installed at the factory is still present this may not be necessary. By default the system will download daily records to a USB drive and has the capacity to hold up to 5 years of data. #### **Change Time-** When the "Change Time" button is pressed a Set Date/Time dialog will appear. Adjust to the current time and date. When finished making adjustments press the "OK" button. Figure 28 # **Change IP-**See Set Up quide #### Data Test (PRO ONLY)- The "Data Test (PRO ONLY)" button should only be used by PRO engineers for troubleshooting purposes. This button will display no data on the screen but will make a test entry into the server database for PRO staff to confirm that communication is occurring between the screen and database server. #### Email Alerts- Income New Yorkson 1977 Yorkson 2007 See Set Up guide #### Send Data to PRO- If the screen is connected to a network that has internet access this should be set to ON. This option will allow status updates to be sent to PRO's database servers. This is also what allows emails to be sent from PRO's servers to your previously specified email alert addresses. Please note that if your screen is not active on a network with an internet connection this should be set to OFF. Errors can occur after failing numerous times to connect to PRO's servers when no internet connection is present. #### 3-5 Admin Screen To access the Admin screen, tap the "ADMIN" button on the bottom navigation bar. The Admin screen gives admin users access to modify system parameters. The values indicated on this screen are specific to the compressor selected in the dropdown on the top left of the screen. Figure 29 Place (T. University Smill 2014 (2014 2019) ### Sync to PRO- When pressed the "Sync to PRO" button will sync the screens unique address, chiller serial number and site name with PRO's servers. This is used to identify the screen in future communications with PRO's servers. PLEASE NOTE THIS IS SET AT THE FATORY AND SHOULD NOT BE SYNCED IN THE FIELD UNLESS DIRECTED BY PRO PERSONNEL. Figure 30 # 4_{TCC OPERATION} ## **4-1 Cooling Demand** The Cooling Demand gauge indicates the system's total cooling demand. The scale will depend on the number of compressors on a system (ex: 1 compressor = 0 - 100, 2 compressors = 0 - 200, 3 compressors = 0 - 300 and 4 compressors = 0 - 400). Figure 31 The four operational modes are as follows. | Mode | Description | | | |-------------|-------------------------------|--|--| | No Demand | The system is at or below its | | | | | set point | | | | Chill Mode | The system is in cooling mode | | | | Please Wait | The system is in a safe guard | | | | | mode to prevent the | | | | | compressor from shutting | | | | | down and restarting | | | | | excessively | | | | Alarm | A system alarm has occurred | | | | | and can be viewed on the | | | | | Alarms screen | | | The system must be in "Chill Mode" for the compressor to turn on. ### **4-2 Compressor** The compressor is controlled through the Comp Off and Comp On suction pressure set point located in the Admin screen. When the suction pressure rises above Comp On setting, the compressor will turn on. When the suction pressure falls below the Comp Off, the compressor will shut down. #### 4-3 Unloader The unloaders are controlled by the "Cooling Demand". The unloader will energize (which unloads the compressor) when the Cooling Demand falls below the UL Off set point. As the Cooling Demand increases, the unloader will deenergize at the UL1 On set point. #### **4-4 Condenser** For air cooled systems with fan cycling controls, the TCC uses a step control to maintain the set point "Control Point" located in the Admin screen. The "Cond Fan Dif" value controls the steps for additional fans as follows. Figure 32 Note that fan 3 is not used on all systems. For systems equipped with a VFD, the TCC supplies a 0-10VDC signal to maintain the "Control Point" value. # 4-5 Liquid Solenoid Valves The liquid line solenoid valves are controlled via Cooling Demand and the LLS Off and LLS On values. When the Cooling Demand goes above the LLS On value, the solenoid valve will open. When the Cooling Demand goes below the LLS Off value, the valve will close. Figure 33 #### 4-6 Pumps Circulation pumps are turned on and off with the compressor. If the circulation pumps are off for a period of time, they will turn on for a short period (stir cycle). The process pump is not controlled by the TCC. # 4-7 Electronic Expansion Valves (EEV) Each TCC control board can control two Electronic expansion valves. These valves open and close to control the superheat. Superheat is determined by the suction temperature probe (J7A and J7B) and the saturated suction temperature (determined by the suction pressure transducer). Superheat set point is located in the ADMIN screen. Figure 34 # **5**Troubleshooting ## Guide If a problem with the chiller occurs, service should be performed by a qualified service mechanic. The following is to be used as a reference guide for diagnosing possible issues with the control system and associated components. # TCC Operation & Indication The operation of the TCC card is displayed in the status lights and indications of the status lights located on the TCC Card. | CR10
CR11
CR12
CR12 | | |------------------------------|--------------------------------| | | Standby | | 9000 | | | • • • • | Refrigeration | | 0000 | Short Cycle | | 0000 | Pump Down Alarm | | • • • • | Shutdown | | | High Discharge Alarm | | 0000 | Discharge Pressure Sensor Fail | | | Suction Pressure Sensor Fail | | | Low Suction Alarm | | | External Alarm | | | High Superheat Alarm | | •••• | Low Superheat Alarm | | | Temp Sensor Fail | | | Circulation Pump Fail | | | Communication Alarm (blinking) | | | | # **5-2 Replacement Parts** **Customer Support Hours:** Monday-Friday 7am-5pm (Pacific Standard Time) Telephone: (253) 735-9466 Fax: (253) 735-2631 Email: service@prorefrigeration.com | Item | Part # | |---------------------------|--------------| | TCC board | TCCREVB | | 4" TCCV | T4A | | 7" TCCV | T7A | | Power supply | MDP60-24A-1C | | Brass temp probe | A4175-21 | | Coated temp probe | IPC8SENSOR | | 0-500 Pressure transducer | P499VCP-105C | | 0-100 Pressure transducer | P499VCP-101C | | Current Switch | R1BXKTF | Figure 35 | Alarm | Description | Correction | |------------------|--|---| | High Head A | High Head Alarm is activated when the discharge pressure exceeds a pre-set value. This is typically set from 25 – 50 | Check condenser fan operation
Check for clogged condenser coil | | الآيم على لاحدول | psi, less than the mechanical high-
pressure switch. | പ്രസാവച്ചത്ത് കഴ്ച സ്മൂന ഗ്രഹ് ഈ സ്വീത | | DP Sensor A | DP Sensor Alarm mode is a failure of the discharge pressure sensor. This is a critical sensor, and will shut down all | Inspect connection to TCC board Check for broken wire, or sensor plug Check for broken transducer | | | outputs immediately if a failure is detected. | mategials for messon reported to the configuration | | SP Sensor A | SP Sensor Fail mode is a failure of the suction pressure sensor. This is a critical sensor, and will shut down all outputs immediately if a failure is detected. | Inspect connection to TCC board
Check for broken wire, or sensor plug
Check for broken transducer | | Low Suc A | Low Suction Alarm mode is activated only in the Refrigeration mode. It has both a psi value for the suction pressure as well as an alarm timer associated with it. If | Check refrigerant level Check glycol concentration Check for frozen evaporator | | | the timer is set to zero, the alarm will be disabled. The low suction alarm point should be set above the low operator shut off point. | und g Demarch value wordpred immuge.
4D lucum ar sgrademand regimen newsaled
ethyr arlan cuthurs. ESR, cummi Sersing. | | External A | External Alarm mode can be activated by low oil pressure, high head pressure, phase loss or compressor protection fail. | Check status of oil pressure switch Check status of discharge safety switch Check status of compressor protection | | | After 5 minutes, the LED's will come on steady and lock out in an alarm condition. If the external alarm is reset before the 5 minutes is up, then normal operation will be resumed. | Apscharge Pictor - Pictorité an l'agrandet d'i
no compres de Sementimas ne medico as
A sun por l'une f | | Superheat A | The Super Heat window has a high and low setting, and a time delay. The TCC calculates the compressor Suction Super Heat continuously, and compares this | Check connection of TXV bulb Review operating conditions Check for frozen evaporator | | | setting to the alarm parameters. The | agil aida e di Lading a Bon aguera).
Ci liberia an agili son base - Wasin ditir
ab ad abis saca an ara ali his salas hear b
a bean e mali ada di salas an ara an agilang | | | compressor is running. Setting the time delay to zero will disable this alarm. | and was after the property of the series | | Temp Sens A | The Temperature Sensor Failure Alarm is activated when a controlling temperature sensor is found out of range. | Inspect connection to TCC board Check for broken wire, or sensor plug Check for broken sensor | ## **Glossary of Terms** The following is a glossery of terms with definitions as they apply to Pro Refrigeration chillers and the TCC controller. Circulation Pump: Used to pump glycol from the glycol resevoir to the evaporator(s). Compressor: Elevates pressure of refrigerant. Condenser: Converts high pressure gas to high pressure liquid. For air cooled applications, this heat exchanger transfers heat from the refrigerant to the air. Contactor: Electrically actuated switch. Similar to a relay. Cooling Demand: Value calculated through a PID loop to assign demand requirements to the refrigeration circuits. CSR: Current Sensing Relay – Device that closes an internal contact when current is present in wire. Also known as "current donut," this device is used to prove circulation pump operation Discharge Pressure: Pressure at the outlet of the compressor. Sometimes refered to as "head pressure." Discharge Temp: Generally refers to the temperature at which refrigerant is changing phase (condensing) for the discharge pressure. (high side of the refrigeration system). EEV: Electronic Expansion Valve – Motor driven valve that is used to control the super heat by metering the liquid feed to the evaporator. This valve replaces Thermostatic Expansion valves (TXV). Embedded Web Server: Computer program that uses HTTP protocol. Ehternet Switch: Multi-port device that can connect multiple computer devices to a network or router. Evaporator: Converts low pressure liquid to low pressure gas. In chiller applications, this is the heat exchanger that transfers heat from the glycol to the refrigerant. IP Address: Numerical label assigned to each device participating in a computer network Glycol: Secondary heat transfer fluid. LAN: Local Area Network - building network ModBus: Communication protocol used to link multiple TCC cards together Thermistor: "Thermal resistor" - type of temperature sensor that changes resistance through a range of temperatures. Transducer: Converts a mechanical pressure to an electronic signal. This sensor allows the TCC to "read" pressure. Pump Down: Condition when there is no liquid refrigerant present in the evaporator and the compressor is off due to low suction pressure. Process Pump: Used to pump glycol from the chilled glycol resevoir to facility Router: Connects networks together and/or to the internet. RS485: Network protocol standard used for communication between TCC cards and to the TCCV. Saturated Suction Temperature: - Suction Temp - Refers to the temperature at which refrigerant is changing phase (evaporating) for the suction pressure (low side of the refrigeration system). Solenoid valve (LLS): Electrically operated valve that is fully open or fully closed. Typically, these valves are used on the liquid line just prior to the expansion valve. Power to open. Suction Pressure: Pressure at the inlet of the compressor. Super heat: Difference between the suction gas temperature after the evaporator and the saturated suction temperature. TCP: Transmission Control Protocol – network protocol used to connect to the world wide web. Unloader: Device that reduces capacity of compressor. USB: Universal Serial Bus – standard connector and communication protocol. The TCC uses a USB port to connect to a memory stick for program uploads as well as log data downloads. VFD: Variable Frequency Drive – Also known as an Inverter – Electronically adjusts the AC power to a specified condition for the output. Usually used as a speed control for fan or pump motors. # **NOTES** # **NOTES** # **NOTES** **26 |** Page #### Pro Refrigeration, Inc 326 8th ST SW Auburn, WA 98001 Mocksville, NC 27028 Tel: 336-283-7281 125 John Crotts Road Tel: 800-845-7781 Fax: 336-751-2632 | | | | | j | | |---|--|--|--|---|---| ` | • |